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A continuous cracked beam vibration theory is developed for the lateral vibration of
cracked Euler–Bernoulli beams with single-edge or double-edge open cracks. The
Hu–Washizu–Barr variational formulation was used to develop the differential equation
and the boundary conditions of the cracked beam as a one-dimensional continuum. The
displacement field about the crack was used to modify the stress and displacement field
throughout the bar. The crack was modelled as a continuous flexibility using the
displacement field in the vicinity of the crack, found with fracture mechanics methods. The
results of two independent evaluations of the lowest natural frequency of lateral vibrations
for beams with a single-edge crack are presented: the continuous cracked beam vibration
theory developed here, and a lumped cracked beam vibration analysis. Experimental results
from aluminum beams with fatigue cracks are very close to the values predicted. A steel
beam with a double-edge crack was also investigated with the above mentioned methods,
and results compared well with existing experimental data.
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1. STATE OF THE ART

Vibration monitoring has great potential for machine condition monitoring. One form of
damage that can lead to catastrophic failure if undetected is fatigue cracking of the
structural elements [1–5]. Kirmsher [6], and Thomson [7] seem to be the earliest studies
of vibrational characteristics of a beam with local discontinuities in the form of a small
slot. A beam with different cross-sectional areas was used to replace the notched section
of the beam.

A crack in an elastic structural element introduces considerable local flexibility due to
the strain energy concentration in the vicinity of the crack tip under load. Long ago, this
effect was recognized and the idea of an equivalent spring, a local compliance, was used
to quantify in a macroscopic way the relation between the applied load and the strain
concentration around the tip of the crack [8, 9]. This idea was mainly implemented in
methods for determining an overall factor, describing the intensity of the stress
concentration by measuring the local compliance of a cracked beam and relating it by
energy arguments to the strain energy concentration and furthermore to the stress intensity
factor. This became a standard method for experimental determination of the stress
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intensity factor and a wealth of results, both analytical and experimental, were tabulated
for a number of cases, different in loading and geometry, [10].

Liebowitz et al. [11], Liebowitz and Claus [12], and Okamura et al. [13] computed the
local flexibility of a cracked bar in bending, which was used for column stability analysis.
For stress analysis purposes, Rice and Levy [14] computed the local flexibility
corresponding to tension and bending, including their coupling terms. Dimarogonas [15]
introduced the local flexibility model of a crack for vibration analysis of cracked beams.
Dimarogonas [16], Chondros [17], Chondros and Dimarogonas [18, 19], Dimarogonas and
Massouros [20], combined this spring hinge model with the fracture mechanics results, and
developed a frequency spectral method to identify cracks in various structures. This
method correlated the crack depth to the change in natural frequencies of the first three
harmonics of the structure for known crack position. Adams et al. [21], and Cawley and
Adams [22] have developed an experimental technique to estimate the location and depth
of the crack from changes in the natural frequencies.

Dimarogonas and Paipetis [23], and Anifantis and Dimarogonas [24] introduced a 5×5
local crack flexibility matrix neglecting torsion. Further, Dimarogonas and Paipetis [23]
observed that this matrix was not purely diagonal but had off-diagonal terms which
indicated the coupling between the longitudinal and lateral vibration.

Gudmundson [25], discussed a dynamic model for beams with transverse cracks.
He showed that a cracked structural member could be represented by a consistent,
static flexibility matrix. The results were compared to experimentally obtained
eigenfrequencies. In the experiments, the cracks were modelled by saw cuts. The theoretical
results for all crack lengths were in agreement with the experimental data. The dynamic
stress intensity factor for a longitudinal vibration of the centrally cracked bar was
determined as well. The results also compared very well with dynamic finite element
calculations.

A full 6×6 matrix for an arbitrary loading of a cracked beam section finally was
introduced by Papadopoulos and Dimarogonas [26], who computed this matrix
analytically using fracture mechanics method. Finite element techniques were used for the
same purpose by Haisty and Springer [27], Chondros and Dimarogonas [28].

Barr [29] and Christides and Barr [30] developed a cracked Euler–Bernoulli beam theory
by deriving the differential equation and associated boundary conditions for a uniform
Euler–Bernoulli beam containing one or more pairs of symmetric cracks. The reduction
to one spatial dimension was achieved by using integration over the cross-section after
certain stress, strain, displacement and momentum fields were chosen. In particular, the
modification of the stress field induced by the crack was introduced through a local
experimental function which assumed an exponential decay with the distance from the
crack and included a parameter that had to be evaluated by experiments. Some
experiments on beams containing cuts to simulate cracks were briefly described. The
change in the first natural frequency with crack depth matched closely by the theoretical
predictions. To validate the theoretical results, Shen and Pierre [31, 32] used a
two-dimensional finite element approach to determine the parameter that controls the
stress concentration profile near the crack tip in the theoretical formulation without
requiring the use of experimental results. They observed an agreement between the
theoretical and finite element results.

The Christides and Barr beam theory is an important step in the right direction for the
development of a rigorous cracked beam vibration theory. However, the assumption of
the exponential term of the stress field about the crack is a limitation that can be easily
lifted. Christides and Barr determined the exponent of the stress field experimentally thus
limiting the applicability of the method, although the stress exponent has been reported
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not to change very much. Fracture mechanics allows the development of a consistent
cracked beam vibration theory without assumptions for the stress field.

Thus, such a consistent continuous cracked beam vibration theory is developed here.
A numerical solution is developed for the prediction of changes in flexural vibration of
a simply supported beam with a single open-edge or a double-edge open surface crack.
Fracture mechanics methods were used to model the crack as a continuous flexibility in
the vicinity of the crack region investigating the displacement field. Although many
experimental results exist, there is extensive confusion in the literature in distinguishing
between a notch and a crack [33]. Saw cuts are used to model cracks. But, no matter how
thin a cut is it will not behave as a crack. A thin cut results in a local flexibility substantially
less than the local flexibility associated with a fatigue crack. To validate the theory
developed, experiments on aluminum beams with fatigue cracks were performed. In
addition, experimental data on steel beams [30] with double-edge surface cracks were used
as well to evaluate the analysis presented here. The theoretical and experimental results
were also compared with analytical results from the Christides and Barr theory.

2. CRACKED EULER–BERNOULLI BEAM—THE EQUATION OF MOTION

A Euler–Bernoulli beam with an open-edge single transverse surface crack is shown in
Figure 1. Let the displacement components be denoted by ui , the strain components by
gij and the stress components by sij with i, j=1, 2, 3 referring to Cartesian axes x, y, z
(Nomenclature are defined in the Appendix). Let pi be the momentum such that Tm =1/2
rdijpipj will be the kinetic energy density (dij is the Kronecker’s delta). For arbitrary
independent variations dui , dgij , dsij , and dpi , the extended Hu–Washizu variational
principle, [29, 34, 35] was introduced in the form:

gV

{[sij,j +Fi − rṗi )dui +[sij −W,gij ]dgij +[gij −(1− 1
2dij )(ui,j + uj,i )]dsij

+[ru̇i −Tm,pi )dpi} dV+gSg

[ḡi − gi ]dui dS+gSu

[ui − ūi ]dgi dS=0, (1)

where, W(gij ) is the strain energy density function, r is the density of the material. Fi , gi

and ui are, respectively, the body forces, the surface traction and the surface displacements.
Moreover, V is the total volume of the solid and Sg and Su are its external surfaces. The
overbar denotes the prescribed values of the surface traction and the surface displacement.
The prescribed surface tractions gi are applied over the surface Sg and the prescribed
displacements ui over Su . Together Sg and Su make up the total surface of the solid. The

Figure 1. Geometry of a simply supported beam with an edge crack.
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differentiation with respect to time (1/1t) is indicated by a dot. Commas in the subscripts
indicate differentiation with respect to Cartesian axes.

To derive the governing equation and applicable boundary conditions for the transverse
vibration of a cracked beam through the variational theorem, equation (1), the x-axis is
taken along the centre line of the beam and the yz plane is the plane of the cross-section.

For an Euler–Bernoulli beam, in the absence of a crack, the displacement field is
assumed in the form u1 =−zw', u2 =0, u3 =w(x, t). The strain field is assumed in the form
gxx =−zS(x, t), gyy = gzz =−ngzz, gxy = gxz = gyz =0, where n is the Poisson ratio. The
assumptions for gyy and gzz allow anticlastic curvature to develop freely. The stress field
is assumed in such a way that the direct stress along the beam axis is of the form
sxx =−zT(x, t) while the only other non-zero stress is sxz due to lateral loading of the
beam. The longitudinal or rotatory inertia and the shear deformation (px term) [30], are
neglected as well as the transverse inertia (py term) associated with the anticlastic
deformation. Thus, the momentum or velocity field is assumed to have the form
px = py =0, and pz =P(x, t).

The change in stress, strain and displacement distributions due to the crack will be
expressed by a crack disturbance function for the axial displacement f(x, z) introduced
here.

For a uniform beam in the absence of body forces, the introduction of the displacement
disturbance function f(x, z) will modify equations (3) of reference [30] to yield:

u=−z{[1+ f(x, z)]w(x, t)}', y=0, w=[1+ f(x, z)]w(x, t),

px =0, py =0, pz =P(x, t),

gxx =−zS(x, t), gyy = gzz =−ngxx , gxy = gyz = gxz =0,

sxx =−zT(x, t), sxz = sxz (x, z, t), sxy = szz = sxy = syz =0,

Fx =Fy =Fz =0, (2)

where u1 = u, u2 = y, and u3 =w in the x, y, z directions, respectively.
Following the method introduced in reference [30] the term sxz is introduced for the

lateral loading of the beam, and furthermore it will be noted f(x, z)= f. Equations (2) can
now be substituted in the general variational theorem, equation (1) and independent
variations of the unknowns w, P, S and T are considered. The variations will be considered
one by one as follows.

For an arbitrary and independent variation dT, the strain–displacement term of
equation (1) becomes:

gV $gxx −
1u
1x%dsxx dV=gx 6gA

(−zS+ z[(1+ f )w]0)− zdT dA7 dx. (3)

Defining the various integrals over the cross section A as

I=gA

z2 dA, I2 =gA

z dA, I4 =gA

z2f 0 dA,

I5 =gA

z2f ' dA, I6 =gA

z2 z2 (1+ f)f dA,
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the right part of equation (3) becomes:

gx

{(I−2I2)S−(I4w+2I5w'+ I6w0)}dT dx. (4)

The stress strain term in equation (1) is

gV 6$sxx −
1W
1gxx%dgxx −

1W
1gyy

dgyy −
1W
1gzz

dgzz7dS dV, (5)

where, W=1/2le2 +G(g2
xx + g2

yy + g2
zz )+1/2G(g2

xy + g2
yz + g2

xz ) the strain energy density, E
is the Young modulus, e= gxx + gyy + gzz is the dilatation, G=E/[2(1+ n)] is the shear
modulus, and l= nE/[(1+ n)(1–2n)] is the Lamé constant. Substituting the various
quantities from equations (2) the stress–strain term (5) simplifies to:

gx

{(T−ES)(I−2I2)) dS dx. (6)

The velocity momentum term is written using assumptions (2) as:

gx

(rI7ẇ− rPA)dP dx (7)

where I7 = fA [1+ f(x, z)] dA.
The first term of equation (1) is the dynamic equilibrium term, which leads to the

equation of motion. Using the assumptions of equations (2), this term becomes:

gV $01sxx

1x
+

1sxz

1z 1du+01sxz

1x
− rP� z1(1+ f)dw% dV

=gA gx 6$(−zT)'+
1sxz

1z %[−zd{(1+ f)w7'%
+01sxz

1x
− rP� 1(1+ f)dw7 dx dA. (8)

Since

d[(1+ f)w]'0
1

1x
[(1+ f)dw], (9)



. .   .22

the first term of equation (8) can be integrated by parts as

gA gx 60z2T'− z
1sxz

1z 10 1

1x1[(1+ f)dw]7 dx dA

=gA $z2T'−0z 1sxz

1z 1%(1+ f)dw dA=x

−gA gx$z2T0−
1

1x 0z 1sxz

1z 1%(1+ f)dw dx dA. (10)

The last term of equation (10) integrated by parts over z results in

gx

1

1x 6gy gz

z
1sxz

1z
dz dy7(1+ f)dw dx

=gy gx

1

1x
(zsxz )(1+ f)dw dx dy=z

−gA gx

1sxz

1x
(1+ f)dw dx dA. (11)

The boundary terms of equation (10) incorporated with the other boundary conditions
of the variational equation (1) yield

gA6z2T'− z
1sxz

1z 7(1+ f)dw dA=x +gy gx

1

1z
(zsxz )(1+ f)dw dx dy=z . (12)

The first and second term of the right part of equation (10) incorporated in equation
(8) reduce the latter to the form

gx gA

[(−z2T)0− rP� ](1+ f)dw dA dk. (13)

Performing the double differentiation indicated and integrating over the cross-section
in equation (13), the dynamic equilibrium term of equation (1) can be rewritten as

gx

{I02 T+2I'2T'+ (I2 − I)T0− rAP� }(1+ f)dw dx. (14)

It will be assumed that the lateral surfaces Sg of the beams are free of external traction,
i.e., all prescribed traction on lateral surfaces are zero. The surface force is obtained from
the stress components as gi = sijnj where nj is the direction cosine of the external normal
to the surfaces with the co-ordinate directions. If the beam is uniform, the normal to its
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lateral surfaces will be at right angles to its axis so that nx is zero. Thus, using equations
(2), the surface forces gi become:

gx = sxxnx + sxyny + sxznz = sxznz ,

gy = syxnx + syyny + syznz =0,

gz = szxnx + szyny + szznz =0. (15)

On the other hand, over the ends of the beam x=0 and x=L0, there are nx =−1 and
nx =1, respectively (assuming plane ends normal to the beam axis). From equations (15)
gx is reduced to 2sxx and gz to 2sxz . The prescribed forces at the ends, integrated over
the section, correspond to an applied force or moment.

The surface integral in the general variational equation (1) thus takes the form, over the
lateral surface of the beam at the limits of z, z1 and z2, and z2 q z1:

gx gy

{[0− sxz ]z=z2 du+[0+ sxz}]z= z1 du} dy dx,

which can be written as:

$gx gy

− sxzdu dy dx%b
z2

z1

.

Using the relation du=−z(1+ f)dw' and integrating by parts over x, the latter surface
integral becomes:

$0gy

zsxz (1+ f)dwdy1bx −gy gx

d

dx
(zsxz )(1+ f)dw dx dy%

z2

z1

. (16)

The second term of this integral cancels the final term of equation (12). The second term
of equation (12) can be integrated by parts over z, and results in a term which cancels the
first term of equation (16). The remaining terms of equation (12) applied to the boundaries
of x are:

gA

{z2T'+ sxz}(1+ f)dw dA=x . (17)

Similarly, for the prescribed forces, the surface integral of equation (1) over the ends
of the beam at x=0 and x=L0, take the form:

$gA

{(X� − sxx )du+(Z� − sxz )(1+ f)dw} dA]x=L0

+$gA

{(X� + sxx )du+(Z� + sxz )(1+ f)dw} dA%x=0

. (18)

The variation dw in equation (17) is arbitrary and independent, which gives at the
boundary

{sxz =−z2T'}=x . (19)
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From equations (18) and (19) and using equations (2) for the quantities du, dw and sxx ,
integration over the section can be performed. The resulting boundary terms take the form,

$6−gA

zX� dA+(I2 − I)T7(1+ f)dw'

+6gA

Z� dA+(I− I2)T'− I'2T7(1+ f)dw%x=L0

−$6−gA

zX� dA−(I2 − I)T7(1+ f)dw'

+6gA

Z� dA+(I− I2)T'− I'2T7(1+ f)dw%x=0

. (20)

On the other hand, for the prescribed displacements, the surface integral of the
variational equation (1) over the ends x=0, and x=L0 is:

$gA

{(u− ū)dsxx +(1+ f)(w− w̄)dsxx} dA%x=L0

−$gA

{(u− ū)dsxx +(1+ f)(w− w̄)dsxx} dA%x=0

. (21)

After substituting for u, w and sxx from equations (2) and integrating over the section,
the surface integral (21) becomes:

$6(I− I2)(1+ f)w'+gA

ūz dA7dT+ {(w− w̄)A}dsxz%x=L0

−$6(I− I2)(1+ f)w'+gA

ūz dA7dT+ {(w− w̄)Adsxz}%x=0

. (22)

The entire variational statement for the vibration of cracked Euler–Bernoulli beams can
now be assembled by using equation (1) and the variational terms (4), (6), (7) and (14)
along with the boundary terms given in equations (20) and (22). The variations dw, dP,
dS, dT and dsxz are regarded as independent so that equation (1) implies, for arbitrary
values of these variations, that each term multiplied by them in the volume integral must
independently be zero, which will give the following relations directly: the
strain–displacement term (4) for dT yields

S=Q1(x)w0+Q2(x)w'+Q3(x)w, (23)

where Q1(x)= I6/(I−2I2), Q2(x)=2I5/(I−2I2), Q3(x)= I4/(I−2I2); from the stress–
strain term (6),

T=ES; (24)
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from the velocity momentum term (7),

P=
I7

A
ẇ; (25)

and from the dynamic equilibrium term (14),

I02 T+2I'2T'+ (I2 − I)T0− rAP� =0 (26)

or

[(I− I2)T0]+ rAP� =0. (27)

Equation (27) is the equation of motion. Substituting for T and P can be made in terms
of the displacement w by using equations (23)–(27). The resulting equation of motion is

E[(I− I2)(Q1w0+Q2w'+Q3w)]0+ rI7ẇ=0. (28)

Equation (28) is the differential equation expressing the consistent beam behaviour for
generally distributed displacement field. The boundary conditions appropriate to the
equation of motion (28) are obtained by equating the surface integral (20) to zero in case
of prescribed external forces, and the equivalent surface integral (22) to zero in case of
prescribed displacements.

Thus, for a simply supported beam the boundary conditions are

w̄=0, X� =0 at x=0 and w̄=0, X� =0 at x=L0.

If cracks are absent from the beam, the functions f, I2, I4, I5, Q2, Q3 are zero, Q1 is unity
and function I7 is replaced by area A. The equation of motion (28) will reduce to

EI 14w(x, t)/1x4 +Ar 12w(x, t)/1t2 =0. (29)

3. THE CRACK DISTURBANCE FUNCTION

To develop the differential equation for the cracked beam from the general equation (28)
a cracked beam of length L0 with both ends (x=0, x=L0) being simply supported, as
shown in Figure 1, is loaded with a bending moment M. The cross-sectional width and
height are b and h, respectively. A crack is located at the bottom edge of the beam at x=L.
The lateral displacement w0 and the axial displacement u0 at the ends of the uncracked
beam are [36, 37]:

w0 = (M/2EI)[L2
0 + n(h2/4)], u0 =−hML0/2EI.

Under general loading, the additional displacements w*, u* and u* due to the presence
of the initial moment M and the crack will be computed by Castigliano’s theorem. If UT

is the strain energy due to the crack, Castigliano’s theorem demands that the additional
rotation u* is

u*= 1UT /1M, (30)

due to the initial moment M and the crack. The strain energy has the form

UT =g
a

0

1UT

1a
da= b g

a

0

JS da, (31)
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where a is the crack depth and the strain energy density Js has a general form

Js =
1
E' $0s

6

i=1

KIi1
2

+0s
6

i=1

KIIi1
2

+m0s
6

i=1

KIIIi1
2

%,
where E'=E/(1− n2) for plane strain, KIi , KIIi , KIIIi are the stress intensity factors
corresponding to the three modes of fracture, which result for every individual loading
mode i.

The stress intensity factor for a single-edge cracked beam specimen under pure bending
M (Figure 1), is [10]

KI = s0zpa · FI (a) where s0 =6M/bh2, a=
a
h

,

FI (a)=1·12−1·40a+7·33a2 −13·1a3 +14·0a4,

which has an accuracy of 20·2% for a/hE 0·6. The strain energy density function Js is

Js =
K2

I

E'
=

1− n2

E
s2

0paF 2
I (a), (32)

where KI is the stress intensity. Thus, equation (30) yields the additional rotation u* as

u*=6p(1− n2)MhFI (a)/EI, (33)

where

FI (a)=0·6272a2 −1·04533a3 +4·5948a4 −9·9736a5 +20·2948a6 −33·0351a7

+47·1063a8 −40·7556a9 +19·6a10.

On the other hand, assuming u0 and u* are the elongation of the lower surface of the
beam due to the bending moment and the existence of the crack, respectively, the following
geometric relations hold

u*/u0 = u*=x−L=/L0/u0. (34)

Since u0 =L0M/EI, equation (34) yields

u*=2u*=x−L=/L0/h. (35)

From equations (2) it is u*=−zf 'w0 and consequently, the crack disturbance function
derivative will be:

f '=−6p(1− n2)h2FI (a)(x−L)/zL0(L2
0 + nh2/4), (36)

which after integration over x yields the crack disturbance function

f=−6p(1− n2)h2FI (a)(x−L)2/zL0(L2
0 + nh2/4). (37)

For a cracked beam with a rectangular cross-section of height h and width b (Figure 1),
the functions I, I2, and I7 defined in equations (3) and (7) are calculated as:

I=Ah2/12, I2 =gA

z(x, z) dA=0, I7 =gA

[1+ f (x, z)] dA. (38)

The functions Q1(x), Q2(x) and Q3(x) defined in equation (23) now become:

Q1(x)= I7(x)/A, Q2(x)=2I'7 (x)/A, Q3(x)= I07 (x)/A. (39)
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The characteristic equation (27) of the cracked beam changes to

c2
0 [(I7w)in]+ I7ẅ=0, (40)

where c2
0 =EI/(rA) is a material constant.

From equation (40) it can be seen that the displacement disturbance factor f(x, z)
directly affects the displacement w(x, t) through the function I7(x). The appropriate
boundary conditions and initial conditions will be used to solve the last differential
equation.

4. NATURAL FREQUENCIES OF A CRACKED BEAM

Consider a beam, as shown in Figure 1, with an open-edge crack at a distance L from
the left end. The boundary conditions are:

w=x=0 =0, 12w/1x2=x=0 = 0, w=x=L0 =0, 12w/1x2=x=L0 =0. (41)

The differential equation for the natural modes can be written as:

[I7(x)W(x)]in +0v*n
c0 1

2

[I7(x)W(x)]=0, (42)

where v*n are the natural frequencies of the cracked beam.
Solving equation (42) along with the associated boundary conditions (41), the solution

is found as:

W(x)=f(x)[Gn cos (b*n x)+Hn cosh (b*n x)+An sin (b*n x)+Dn sinh (b*n x)], (43)

where v*n = c0b*2
n are the natural frequencies of the cracked beams, Gn , Hn , An and Dn are

constants, and f(x)=1/I7(x) is the shape disturbance function associated with the crack
disturbance function f(x, z). Since w=0 at x=0, equation (43) yields Gn =0, Hn =0, and
consequently

W(x)=f(x)[An sin (b*n x)+Dn sinh (b*n x)]. (44)

The boundary conditions at x=L0 give:

An sin (b*n L0)f(L0)+Dn sinh (b*n L0)f(L0)=0

An [−f(L0) sin (b*n L0)b*2
n +2f '(L0) cos (b*n L0)b*n +f0(L0) sin (b*n L0)]

+Dn [f(L0) sinh (b*n L0)b*2
n +2f'(L0) cosh (b*n L0)b*n +f0(L0) sinh (b*n L0)]=0.

(45)

The system of equations (45) yields the characteristic equation

I'7 (L0)/I7(L0)[cos (b*n L0)− sin (b*n L0) coth (b*n L0))]+ b*n sin (b*n L0)=0. (46)

This implicit natural frequency equation (46) can be solved directly for an exact solution
b*n through a numerical method. Results with the aforementioned procedure for the lateral
vibration of a simply supported Euler–Bernoulli prismatic beam with an open crack
located at mid-span are shown in Figure 2.

Results refer to an aluminum beam of length 0·235 m, cross-section width b=0·006 m,
cross-section height h=0·0254 m, E=7·2E10 N/m2, material density 2800 kg/m3 and
Poisson ratio 0·35. The continuous beam theory results correlate well with the experimental
data for crack depths up to 60%.
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Figure 2. Lowest transverse natural frequency ratio v*1 /v1 for a simply supported beam with a surface crack
at mid-span, versus the crack depth ratio a= a/h. Analytical results: (a) continuous cracked beam model,
equation (46); (b) lumped crack flexibility model, equation (48); (c) Christides and Barr’s [30] theoretical results,
equation (34). Experimental results: w.

Also, in Figure 2, the current results of the continuous model for the first mode was
compared with Christides and Barr’s [30] theoretical results (equation (34)).

5. BEAM WITH LUMPED CRACK FLEXIBILITY

The above procedure distributes the added flexibility due to the crack over the length
of the beam. For comparison, the natural frequencies of a cracked beam considering the
crack as a local flexibility, was found. The local flexibility can be found from equation (33)
as

c=6p(1− n2)hF1(a)/EI.

Assuming that the effect of the crack is apparent in its neighbourhood only, the beam
can be treated as two uniform beams, connected by a torsional spring of local flexibility
c at the crack location. The modes of harmonic vibration of the two segments of the beam,
left and right of the crack, respectively, are

W1(x)=A1 cos (lx)+A2 cosh (lx)+A3 sin (lx)+A4 sinh (lx),

W2(x)=B1 cos (lx)+B2 cosh (lx)+B3 sin (lx)+B4 sinh (lx),

where the origin of x for both segments is at the left support, vLn the natural frequencies
of the cracked beam with lumped crack flexibility, l2 =vLn /c0, and c2

0 =EI/(rA).
The coefficients Ai , Bi can be found by substituting this solution into the boundary

condition equations. Assuming constant properties along the beam, the boundary
conditions for the left and right parts of the beam are:

w1=x=0 =0, w2=x=L0 =0, 12w1/1x2=x=0 =0, 12w2/1x2=x=L0 =0,

w1=x=L −w2=x=L =0, 12w1/1x2=x=L − 12w2/1x2=x=L =0,
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13w1/1x3=x=L − 13w2/1x3=x=L =0,

1w2/1x=x=L − 1w1/1x=x=L =(EIc/L)L12w2/1x2=x=L , (47)

where EIc/L is the non-dimensional cracked section flexibility. Defining a non-dimensional
crack location measured from mid-point b=(L−L0/2)/(L/2) yields the natural frequency
equation for the beam with lumped crack flexibility:

4 sin lL0 sinh lL0 + lL0(EIc/L)[sinh lL0(cos lL0 − cos blL0)

+sin lL0(coshlL0 − coshblL0)]=0 (48)

Equation (48) is solved numerically to yield the natural frequencies vLn as shown in
Figure 2.

6. EXPERIMENTAL EVIDENCE

Prismatic beams made of aluminum of rectangular cross-section 7×23 mm and length
235 mm were prepared. Material properties are: Young’s modulus of elasticity
E=7·2 E10 N/m2 and material density 2800 kg/m3. At mid-span, a sharp notch was
introduced perpendicular to the longitudinal axis and the longer dimension of the
cross-section. Then, the beam was placed on a shaker table, with one end fixed and the
other free and was vibrated at its lowest bending natural frequency for the purpose of
initiating and propagating a fatigue crack. Different specimens were vibrated at different
numbers of cycles so that different crack lengths would be obtained. To detect crack
propagation, a transparent measuring scale was attached on the beam’s side and a strobe
light connected to the vibrating table power supply was used. When the desired crack depth
was obtained, the beam was taken out of the vibrating table and the crack depth was
measured on both sides of the beam. If the crack length was not symmetric on both sides
of the beam, the specimen was rejected and the fatigue crack formation was repeated on
a new specimen.

The crack was forced open to assure compliance with the open crack assumption of the
analysis. Then, each beam was simply supported at the two ends by sharp knife-edged steel
supports to assure free flexural motion. A small accelerometer of mass 1 g was fixed at
mid-span on the surface of the beam opposite to the crack. To avoid bouncing the beam
was lightly tapped with a miniature hammer and the resulting vibration signal was
recorded and plotted. The vibration frequency was calculated by measuring the time
elapsed for 50 cycles of vibration. Moreover, an FFT transform was performed on the
stored signal for an independent measurement of the flexural natural frequencies. The
lowest natural frequency of the short aluminum beams was around 1·6 kHz. The 100-kHz
sampling rate two channel A/D converter used could give good accuracy for the
fundamental frequency measurement.

The measurements were consistent up-to crack depths of slightly more than half the
width height, a= a/h=0·6. At larger depths, vibration coupling resulted in a crowded
spectrum and a complex time signal so that the natural frequency could not be measured
with confidence. Moreover, at depths smaller than a=0·1 the difference from the natural
frequency of the uncracked beam was not measurable. Therefore, experimental results will
be limited here for a between 0·1 and 0·6. For each specimen the ratio of the undamaged
to the cracked beam frequency was of importance thus eliminating the influence of minor
differences in the frequencies of the uncracked specimen measured. Also, the experimental
points are averages from tests but the spread of frequency measurements about the points
was very small.
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7. DOUBLE-EDGE SURFACE CRACK

The stress-intensity function KI for a beam with a double-edge crack under the bending
moment M is [10, 38]:

K1 = s0zpaF1(a),

with

s0 =6M/bh2, a= a/h

and

FI (a)=1·130−1·374a+5·749a2 −4·464a3 +15·25a6 −9·315a7 for 0E aE h/2.

In the above equations, a is the depth of the crack on each side of the beam, b is the
thickness of the beam, and h is the height of the cross-section of the beam.

Equation (31) yields

UT =6(1− n2)M2hpF2
1 (a)/E, (49)

where

FI (a)=0·63845a2 −1·03508a3 +3·72015a4 −5·17738a5 +7·55301a6 −7·33244a7

+2·49091a8 −2·3391a9 +2·55976a10 −9·7367a11 +6·93036a12 +5·42308a16,

and hence the additional rotation u* due to the crack will be:

u*=6p(1− n2)MhFI (a)/EI. (50)

The displacement disturbance functions yield in a similar way as in equations (36) and
(37) as:

f '=−12p(1− n2)h2FI (a)(L0 −L)/L0z(L2
0 + nh2/4)

and

f= h−12p(1− n2)h2FI (a)(L0 −L)2/L2
0 (L2

0 + nh2/4).

Figure 3. Lowest transverse natural frequency ratio v*1 /v1 for a simply supported beam with a double-edge
surface crack at mid-span, versus the crack depth ratio a=2a/h. Analytical results: (a) lumped crack flexibility,
equation (48); (b) continuous crack model, equation (46); ( c) Christides and Barr’s [30] theoretical results,
equation (34). Experimental results [30]: w.
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The solution of the characteristic equation (46) for a beam with a double-edge crack
is shown in Figure 3. Also, in Figure 3, the current result of the continuous model for the
first mode was compared with Christides and Barr’s [30] experimental results for a simply
supported beam with a double-edge open crack at mid-span, symmetric with respect to
the neutral axis and perpendicular to it. In the same figure, the lumped crack flexibility
model equation (48), as well as the solution of the frequency shifting ratio equation (34)
of reference [30] for the cracked beam are also shown. Beam data are L=0·575 m,
b=0·00952 m, h=0·03175 m, E=2·06E11N/m2, material density r=7800 kg/m3 and
Poissson ratio n=0·35. The continuous cracked beam model provides results closer to the
experimental data than Christides and Barr’s theoretical results, and correlates well with
the lumped crack flexibility model.

8. CONCLUSIONS

The continuous cracked beam vibration theory developed here, and the application to
simply supported beams with a single- or a double-edge open surface crack led to a good
approximation for the dynamic response to lateral excitation. This systematic cracked
beam formulation is a generalization of Christides and Barr’s cracked beam theory. The
continuous cracked beam theory that has been developed by Christides and Barr [29, 30],
a very important step towards a consistent crack beam theory, uses an experimentally
defined crack disturbance function. The continuous cracked beam theory that has been
developed by Wauer [38], a rigorous formalization of the local flexibility approach, uses
the normalization of the local flexibility to develop a differential equation for the cracked
beam. In the present formulation the transverse vibration model of the cracked beam is
based on analytical expressions for the displacement field obtained with well-established
methods in fracture mechanics and published experimental or analytical results for the
stress intensity factor.

To validate the theory developed, experiments on aluminum beams with fatigue cracks
were performed. Experimental results on aluminum beams with single-edge open cracks,
and experimental data for steel beams with double-edge cracks obtained by Christides and
Barr are very close to the continuous cracked beam formulation.

It is expected that the continuous cracked beam theory will be a useful alternative tool
for vibration analysis of cracked structures, as it can be easily extended to other vibration
modes, geometries and boundary conditions and to coupled lateral and torsional vibration
problems. Changes in the fundamental frequency of cracked beams were investigated since
it is of prime importance in engineering applications. Moreover, the continuous cracked
beam differential equation formulation lends itself for further analysis, beyond the natural
frequency calculation.

Finally, the continuous cracked beam formulation can be readily applied to the flexural
vibration of beams with single- or double-edge surface cracks, and be extended to multiple
cracks and other geometries and boundary conditions.
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APPENDIX: NOMENCLATURE

a crack depth
A beam cross-sectional area
c local crack flexibility
c0 material constant
E Young’s modulus of elasticity
e=(gxx + gyy + gzz) volume dilatation
f(x) crack disturbance function
Fi body forces
gi surface traction
G Shear modulus of elasticity
Gn , Hn constants
h cross-section height
I cross-sectional area moment of inertia
Js strain energy density function
KI stress intensity factor
L length of beam
nj direction cosine
pi momentum
Sg , Su external surfaces
S(x,t) strain function
T(x,t) stress function
Tm kinetic energy density
ui displacement field components
u0 axial displacement of the uncracked beam
u* axial displacement due to crack
UT strain energy due to crack
V total volume of the solid
W(gij ) strain energy density function
w(x, t) lateral displacement function
w0 lateral displacement of the uncracked beam
w* lateral displacement due to crack
a crack ratio a/h
b non-dimensional crack location
b*n cracked beam natural frequency parameter
gij strain tensor components
dij Kronecker’s delta
u* additional rotation due to crack
l Lamé’s constant
n Poisson ratio
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r material density
sij stress tensor components
y displacement at crack tip region
f(x) mode disturbance function
vn natural frequencies of the uncracked beam
v*n natural frequencies of the cracked beam
vLn natural frequencies of the cracked beam with lumped crack flexibility


